

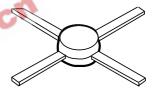
Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

MSA-0285

Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 2.6 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Low Cost Plastic Package


Description

The MSA-0285 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost plastic package. This MMIC is

designed for use as a general purpose $50~\Omega$ gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using HP's 10 GHzft, 25 GHzf MAX, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

85 Plastic Package

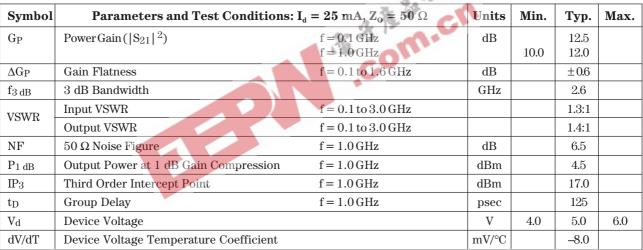
Typical Biasing Configuration

RFC (Optional)

$$C_{block}$$
 $V_{cc} \ge 7$
 $V_{cd} \ge 7$
 $V_{d} = 5$
 $V_{d} = 5$

5965-9563E 6-282

MSA-0285 Absolute Maximum Ratings


Parameter	Absolute Maximum ^[1]				
Device Current	60 mA				
Power Dissipation ^[2,3]	325 mW				
RF Input Power	+13dBm				
Junction Temperature	150℃				
Storage Temperature	−65 to 150°C				

Thermal Resistance $[2,4]$:				
$\theta_{\rm jc} = 95$ °C/W				

Notes

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at $10.5 \,\text{mW/}^{\circ}\text{C}$ for $T_C > 119^{\circ}\text{C}$.
- 4. See MEASUREMENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25$ °C

Note:

1. The recommended operating current range for this device is 18 to 40 mA. Typical performance as a function of current is on the following page.

MSA-0285 Typical Scattering Parameters ($\mathbf{Z}_0 = \mathbf{50}~\Omega,\, \mathbf{T}_{\mathrm{A}} = \mathbf{25}^{\circ}\!\mathrm{C},\, \mathbf{I}_{\mathrm{d}} = \mathbf{25}~\mathrm{mA}$)

Freq. GHz	S ₁₁		\mathbf{S}_{21}			\mathbf{S}_{12}			\mathbf{S}_{22}	
	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.10	174	12.6	4.25	175	-18.6	.118	2	.14	- 7
0.2	.10	168	12.5	4.22	171	-18.5	.119	3	.13	- 12
0.4	.10	157	12.4	4.17	161	-18.3	.122	6	.14	- 26
0.6	.09	143	12.3	4.10	153	-18.3	.121	7	.14	-38
0.8	.08	132	12.1	4.03	144	-18.0	.126	11	.14	-4 8
1.0	.08	122	11.9	3.95	135	-17.5	.133	12	.14	-60
1.5	.04	95	11.4	3.70	115	-17.0	.142	16	.13	– 85
2.0	.02	117	10.6	3.40	95	-16.0	.158	17	.12	- 110
2.5	.05	- 173	9.9	3.11	82	-15.0	.177	20	.12	-128
3.0	.12	-175	8.9	2.78	65	-14.7	.185	19	.11	-148
3.5	.16	179	7.9	2.49	49	-14.0	.199	14	.10	- 145
4.0	.21	169	6.9	2.22	35	-13.7	.207	11	.10	- 134
5.0	.28	139	5.0	1.77	9	-13.0	.224	4	.12	-118
6.0	.41	100	3.0	1.42	-16	-12.9 🊜	.226	- 5	.09	- 154
A model for t	his device	is available	in the DEV	ЛСЕ MODE	LS section	i. , & 3				
2 1 2 C										
Typical Performance, $T_A = 25^{\circ}C$										
(unless otherwise noted)										
14										

Typical Performance, $T_A = 25$ °C

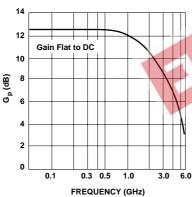


Figure 1. Typical Power Gain vs. Frequency, $T_A = 25^{\circ}C$, $I_d = 25$ mA.

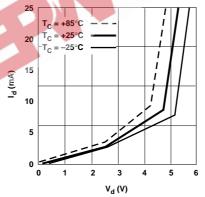


Figure 2. Device Current vs. Voltage.

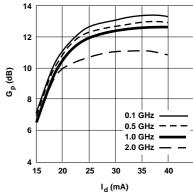


Figure 3. Power Gain vs. Current.

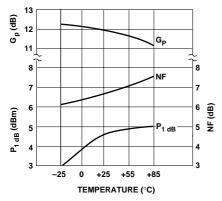


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, $I_d=25mA$.

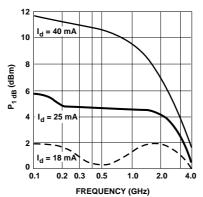


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

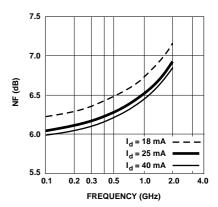
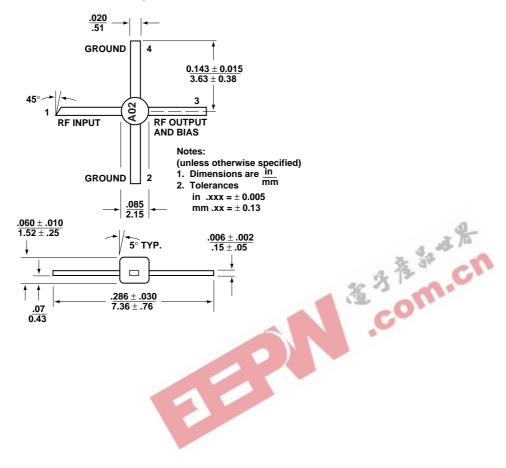



Figure 6. Noise Figure vs. Frequency.

85 Plastic Package Dimensions

